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Spatiotemporal growth of faceted and curved single crystals

Thein Kyu,* Rujul Mehta, and Hao-Wen Chiu†

Institute of Polymer Engineering, The University of Akron, Akron, Ohio 44325
~Received 7 September 1999!

The spatiotemporal growth of single crystals in a crystalline polymer has been investigated theoretically
based on a nonconserved time dependent Ginzburg-Landau equation~known as TDGL model A!. In the
description of the total free energy, a double-well local free energy density signifying metastability of crystal
ordering is combined with a nonlocal free energy term representing an interface gradient. The resulting
nonlinear reaction diffusion equation after renormalization possesses a solitary wave property. Two-
dimensional numerical calculations were performed to elucidate the faceted single crystal growth including
square, rectangular, diamond-shaped, and curved single crystals. A three-dimensional simulation was also
undertaken for the emergence of diamond-shaped single crystals in polyethylene. Of particular importance is
that the model field parameters can be linked directly to the material parameters of polyethylene single crystals.
Simulation with various elements of the interface gradient coefficient tensor captures various topologies of
polymer single crystals.

PACS number~s!: 61.41.1e, 81.10.Aj, 87.15.Nn
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I. INTRODUCTION

A rich variety of polymer morphologies ranging from
single crystals to spherulites have been reported over a
century@1–4#. The former have been generally grown fro
polymer solution, whereas the latter are commonly obser
during crystallization from the melt by either isotherm
crystallization or cooling below the crystallization temper
ture. Recently, it has become apparent that some poly
single crystals can be grown from the melt as well@5#. The
wealth of experimental evidence on polymer morpholo
and crystallization kinetics is appealing for theoretical dev
opment. However, these morphologies are kinetically sol
fied, and thereby nonequilibrium in nature. It is difficult
rationalize all these nonequilibrium structures in a coher
manner without understanding how these structures em
during isothermal crystallization. Hence it is essential to
vestigate the spatiotemporal growth of crystalline textur
Numerous theoretical efforts have been directed to the el
dation of crystallization habits and emerging morpholog
of semicrystalline polymers; however, a unified opinion h
yet to emerge, particularly a theoretical elucidation of t
polymer crystal growth@6–14#.

One of the most tested theories in polymer crystallizat
is the Lauritzen-Hoffman~LH! nucleation theory, which de
scribes the deposition of a stem on a flat substrate and
subsequent attachment of additional stems on adjacent
@6,7#. The original LH theory has been applied to the kinet
of rectangular and/or diamond-shaped single crystal gro
with straight edges. However, it has been found experim
tally that some solution grown as well as melt grown sin
crystals exhibit curved topologies@2,8#. Sadler pointed out a
potential deficiency of the original LH theory in explainin
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the growth of such curved crystals@9#. Subsequently, Sadle
introduced a surface roughening concept to explain
curved crystal growth, and concluded that growth sect
such as~110! and ~100! planes grow at different rates
thereby resulting in curved single crystals. Miller and Ho
man @11,12# contended that the faces in polyethylene sin
crystal lamellae exhibiting curvature are the slowly growi
~100! plane, but not the fast growing~110! front. They modi-
fied the nucleation theory with the idea that the growth in
~110! sector is governed by the flat edge mechanism as
posed in the original LH model, but the growth at the~100!
front takes place as serrated on the molecular level.

Mansfield@10# calculated the nucleation of a stem on
existing flat substrate and subsequent spreading events b
on the continuum approach originally proposed by Fra
@13# using the moving boundary equation. The Mansfie
model captured the growth behavior of regime II~a multi-
nucleation regime! and regime III~a multinucleation regime
with rough surfaces! with various spatial growth topologie
including lozenges and curved single crystals, but it can
account for the growth in the mono-nucleation regime~i.e.,
the so-called regime I!. Tanzawa and Toda@14# simulated
various single crystal topologies based on the Mansfi
model using a Monte Carlo approach. They concluded t
their simulation conforms remarkably well to the theoretic
expression of Mansfield@10#. However, Point and Villers
@15# argued that Mansfield’s solution is not exact, and
incapable of explaining curved~100! crystals of large exten-
sion ratios. They proposed a unified model that media
between the nucleation-controlled growth and the surf
roughening mechanism. Their computation based on
modified Frank equation in conjunction with Sadler’s surfa
roughening conditions captured the highly elongated cur
crystals as well as the bisectorization of lanceolated crys
observed experimentally in Ref.@16#. The original LH theory
@6,7# and its modifications@11,12#, as well as the alternative
models @9,10,14,15#, have their own merits in explaining
various crystallization habits, but an agreed upon opinion
yet to emerge@5#.
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4162 PRE 61THEIN KYU, RUJUL MEHTA, AND HAO-WEN CHIU
The original LH kinetic theory describes a temporal cry
tal growth, but it lacks spatial diffusion of the interfac
Hence most simulations pertaining to the spatiotempo
growth of polymer single crystals utilize the classical Fra
model @13# that involves calculations with a moving fron
having a crystal-melt interface of zero thickness. Such
moving front with a discrete interface often leads to ma
ematical complications@13#. To circumvent the moving
boundary problem, it is advantageous to employ front pro
gation with a crystal-melt interface of nonzero thickness o
finite interface gradient such as propagation of interface
the form of a solitary wave@17#, but with an appropriate free
energy to capture the physical essence of crystallization

We proposed a ‘‘phase field’’ model in which the enti
spatial field is treated in the context of a time depend
‘‘phase’’ order parameter, which describes the local state~or
phase! of the system in time and space@18–25#. It is thus
possible to express the entire system as a continuous
with thermodynamic variables as a function of the phase
der parameter. Such a model eliminates the sharp edge
the interface inherent in the moving boundary approach@13#,
and thus can be solved numerically. The phase field mo
derived from the coupled time-dependent Ginzburg-Lan
~TDGL! model C @26,27# has been successfully applied
the crystal growth in metal alloys@23# and eutectic crysta
growth @28#. Recently, a similar methodology was applied
the elucidation of rhythmic growth of concentric and spi
spherulites in a binary polymer blend containing a crystall
polymer as one component@29#. In model C, the conserve
compositional order parameter~concentration or volume
fraction of the blend! and the nonconserved crystal ord
parameter are coupled in nonlinear reaction diffusion eq
tions @23,28,29#. The total free energy density involves
Landau type double well potential with respect to the crys
order parameter for crystallization@29# and a Flory-Huggins
free energy density for a demixing of the blend@30#. For a
single component system, the nonlinear differential equa
involving the conserved compositional order parameter
comes unnecessary. Hence, the two-coupled TDGL~model
C! equations can be reduced to a single nonlinear TD
~model A! equation with a nonconserved order parame
pertaining to crystallization, hereafter called a crystal or
parameter. Note that for a more complex case where the
energy functionals for density and orientational crystal or
parameters are different, the two coupled model A equati
of the individual order parameters may be employed. In
dition, all sharp interface problems have been shown to a
as a particular limit of the phase field@20#. In the dendritic
growth of snowflakes@22#, it is necessary to couple with th
heat balance equation in the phase field model. However
mass diffusion of polymer molecules is extremely slow re
tive to the heat flux, such that the temperature field can
regarded as uniform during isothermal crystallization. Hen
the effect of heat balance coupling on the emerging polym
crystals, if any, would be negligible.

In this paper, we deduce a theoretical model based on
TDGL model A by taking into consideration a double we
potential with respect to a crystal order parameter@22# to
capture the metastability of the polymer melt subjected
crystallization. The total free energy is composed of a n
local gradient term and a local free energy density tha
-
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expanded in terms of the crystal order parameter. The res
ing nonlinear reaction diffusion equation can be solved
merically on a square lattice (2563256) using a finite dif-
ference method for spatial steps, and an explicit method
temporal steps with an absorbing boundary condition. T
simulation has been performed using various temporal s
(Dt) on several grids (64364, 1283128, 2563256, and
5123512) to assure stability of the computation; howev
only the results of (2563256) for two-dimensional~2D! and
(64364364) for 3D simulations are shown here to avo
cumbersome calculation. The spatiotemporal growth of v
ous forms of polymer single crystals has been demonstr
and subsequently compared with the diamond-shaped p
ethylene single crystals using the literature values for ma
rials parameters involved.

II. THEORETICAL SCHEME

The time-dependent Ginzburg-Landau equation is b
cally an equation of motion that relates the temporal cha
of a phase order parameter~e.g., a local concentration! to a
local chemical potential and a nonlocal interface gradie
The TDGL model A equation for a nonconserved order p
rameter is customarily expressed as@26,27#

]c~r ,t !

]t
52G

dF

dc
, ~1!

wherec represents the crystal order parameter, andG is the
mobility. F is the total free energy of the crystal orderin
which may be defined as

F~c!5E f cryst~c!dV, ~2!

where the total free energy of the crystal ordering consist
a local free energy density and a nonlocal gradient term,
f cryst5 f local1 f grad. The local free energy density in turn ma
be given in the form of the Landau expansion as@23,25,29#

f local~c!5WE
0

c

c~c21!S c2
1

2
2u~T! Ddc5WFz~T!

c2

2

2@11z~T!#
c3

3
1

c4

4 G , ~3!

wherez(T)51/21u(T), andW is a dimensionless constan
As will be demonstrated in a later section,uz(T)u is a quan-
tity that can be related to supercooling and heat of fusion.
shown in Fig. 1, the local free energy density has a dou
well shape with respect to the crystal order parameterc.
Physically,c50 represents the melt, whereasc.z implies
a crystalline state. At the crystal melting temperatureTm , the
free energy densities for the crystalline state and the melt
equivalent. WhenT,Tm , the free energy density of th
crystal ordering has a global minimum atc51. The solid
crystal phase is therefore a stable phase as it has the lo
free energy, and thus the melt is metastable. On the o
hand, whenT.Tm , the global minimum of the free energ
density is atc50, which represents a stable melt; thus
crystals must melt.
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The nonlocal free energy density may be described
terms of the gradient free energy density as

f grad~c!5
1

2
@k•“c#2, ~4!

where k is the interface gradient coefficient, and“ is the
space derivative operator. In order to take into account
surface energetic at two growth fronts, we considerk as a
second rank tensor@31#, i.e.,

k5H k11 k12

k21 k22
J . ~5!

It should be noted that the tensorial representation ofk was
originally proposed by Cahn and Hilliard, but it was treat
as scalar for simplicity in their original paper@31#.

Substituting Eqs.~2!–~5! into Eq. ~1!, one obtains

]c

]t
52G

dF

dc
52G@Wc~c21!~c2z!2“•$k•~k•“c!%#.

~6!

The derivation of the functional derivativedF/dc in Eq. ~6!
is given in the Appendix. It is customary to express t
above equation in a dimensionless form with dimensionl
time t and dimensionless variables denoted with tilde sy
bols as follows:

x̃5
x

l *
, ỹ5

y

l *
, t5

D

l * 2 t; ~7!

where l * is the characteristic length, andD is the diffusion
coefficient. Substituting Eq.~7! into Eq.~6! leads to the final
governing equation as

]c

]t
52G̃@Wc~c21!~c2z!2“̃•$k̃•~ k̃•“̃c!%#, ~8!

where G̃5G l * 2/D, k̃ i j 5k̃ i j / l * , and “̃5(]/] x̃)êx

1(]/] ỹ)êy; êx andêy being covariant unit vectors inx andy
directions.

FIG. 1. Schematic plot of the local free energy density a
crystal order parameterc for various temperatures showing th
metastable energy barrier for a phase transition from the melc
50) to the crystalline state (c51) with equilibrium atTm .
n

e

s
-

III. RESULTS AND DISCUSSION

A. Faceted single crystals

Faceted single crystals in polymers are essentially t
layer lamellar crystals@1#. Although simplified in many as-
pects, this rendition of a planar two-dimensional lamel
crystal serves as a basis for elucidating various fundame
features that pertain to the emergence of morphology of b
polymer crystals. The lateral growth in the lamellar crys
may be viewed as the addition of fresh stems that reflects
unit cell geometry of the polymer crystal@1–5#. The lamellar
crystals have well defined shapes predominantly in rectan
lar or truncated rectangular shapes. However, for the purp
of demonstration, we shall first consider the simplest cas
isotropic growth, i.e., equal growth rates along the two l
eral edges that give rise to a square single crystal@32#. The
elements of the interface gradient coefficient tensor in
mensionless units may be taken ask̃115k̃225k̃ and k̃12
5k̃2150 which, when combined with Eq.~8!, lead to

]c

]t
52G̃@Wc~c21!~c2z!2k̃2¹̃2c#. ~9!

It is well established that nucleation can be trigger
through generation of strong thermal noise or seeded wi
foreign object. In the present case, a nucleation event is
gered with a single nucleus at the center of the lattice hav
a Gaussian profile such thatc(r )5exp(2r2/R2), R being the
radius of the initial nucleus@33#. It should be pointed out tha
the nucleus could be of any shape, for instance in the form
thermal noise, as it is inconsequential to the spatiotemp
growth of a single crystal. That is to say the crystal spre
along a given substrate by depositing new stems on adja
sides and eventually emerges to a square shape~Fig. 2!, al-
though the crystallization begins with a round nucleus.

Figure 3 shows the detailed growth events of the sa
single crystal over a short time span in which a new stem
deposited at a lamellar front that constitutes surface nu
ation. In this nucleation event, excess surface free energ
created while the bulk free energy decreases due to gro
The additional stems are attached in adjacent positions
each side, and spread in both directions along the lat
strip. The lateral spreading of the stems may be character
as lateral growth with a rateg, which occurs on all four sides
This lateral growth is analogous to the substrate comple
process in regime I@7,10#. The fact that the growth along th
lateral edge is favored over the growth normal to it is simp
due to the high cost of the nucleation process. The forma
of a new strip~nucleation! may be viewed as the growt
normal to the lateral edge which is usually characterized
the nucleation-controlled growth with a rate denotedG. It is
apparent that the growth rate along the lateral edge,g is
greater than that normal to it,G. However, a new nucleation
event could occur before all lateral sites are complet
filled, in particular when the crystal size becomes very lar
Strictly speaking, the present finding is at variance with
classical picture of regime I, where all sites must be co
pletely filled before a new nucleation could occur on the j
completed strip. It is also different from regime II, whe
more than two nuclei can form on the same strip@5,10#.

Figure 4~a! shows the temporal change of the crystal s

d
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FIG. 2. The emergence of the square single crystal in the cry

order parameter field calculated according to Eq.~7!, with G̃
50.1894,W55.086,z50.256, andk̃250.1063 on a 2563256 lat-
tice, showing the temporal increase in the single crystal size.

FIG. 3. The enlarged version of the emerging single crysta
Fig. 2, at an interval of 202–214 time steps, exhibiting surfa
nucleation on four sides~see 204! followed by spreading of the
stems along the edges~204–214!.
over a long time. The detailed growth behavior may be b
characterized in comparison with the lateral growth~spread-
ing of the stems! along the strip in a shorter time span@Fig.
4~b!#. The initial increase of the crystal size is due to t
attachment of a new stem on the strip representing sur
nucleation. The crystal size remains unchanged until the
tire edge has been filled, then the size increases by an am
of the width of a single stem in the second nucleation eve
The lateral growth along the strip exhibits a nonline
~sigmoidal-like! growth during stem propagation. Howeve
if the crystal size were sufficiently large, the growth cur
will be stretched out such that the intermediate interval m
be approximated by a linear slope to roughly estimate
lateral growth rateg. The lateral growth slows down asymp
totically when the spreading is near completion, as shown
Fig. 4~b!. Then the crystal size increases again during
subsequent nucleation cycle. Of particular interest is that
present calculation captures the square single crystal as
served in poly~4-methyl-pentene-1! @32#, although pattern
matching is not the main objective of the present study.

As expected, the overall decay of free energy with tim
appears monotonic@Fig. 5~a!#. However, if one carefully ex-
amines the intricate details of the free energy dissipation d
ing the individual events of nucleation and growth as exe
plified in Fig. 5~b!, the free energy decays in a rhythm
manner with time. This observation is not surprising in vie
of the fact that the surface nucleation generates excess
energy; thus it raises the bulk free energy periodically wh
ever a new nucleation event occurs. Consequently, the re
ant free energy curve shows a rhythmic character, i.e.,
free energy humps appear periodically by overlapping on
montonically decaying free energy. Of particular importan

al

f
e

FIG. 4. The variation of the single crystal size with time step
showing ~a! apparent linear growth with a nucleation controlle
growth rateG over a time scale corresponding to Fig. 2; and~b! a
change in dimension of the single crystal across the center wi
growth rateG and along the lateral edge, with a lateral growth ra
g over a shorter time span corresponding to Fig. 3.
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PRE 61 4165SPATIOTEMPORAL GROWTH OF FACETED AND CURVED . . .
is that this rhythmic energy dissipation occurs in synch
nism with the successive surface nucleation followed by
lateral growth.

In practice, different faceted fronts grow with differe
rates. Hence the single crystals thus formed would have
ferent shapes such as rectangular or diamond shapes.
Lovinger, and Cais@34# found that syndiotactic polypropyl
ene ~s-PP! single crystals grown from the melt have a
orthorhombic unit cell with dimensionsa51.45 nm, b
51.12 nm, andc50.74 nm. Apparently, the growth alon
the ~010! plane is greater than that of the~100! front; there-
fore, thes-PP single crystal is highly anisotropic showing
lathelike ~rectangular! appearance with the long axis alon
theb-axis direction and the short axis along thea-axis direc-
tion. Later, Buet al. @35# showed that thes-PP single crystals
often exhibit sectorization along the diagonals in which t
pairs of microsectors are seemingly twinned. Further inv
tigation using atomic force microscopy and electron diffra
tion revealed that the lamellar thickness in the two sector
different, showing different folding habits. These observ
textures have been ascribed to result from the different
energies in the two sectors@36#.

To obtain a lathelike single crystal, the elements of
interface gradient coefficient tensor in dimensionless u
may be set ask̃11Þk̃22 andk̃125k̃2150. Substituting in Eqs.
~5! and ~6!, one obtains

]c

]t
52G̃FWc~c21!~c2z!2S k̃11

2 ]2c

] x̃2 1k̃22
2 ]2c

] ỹ2 D G .
~10!

Figure 6 shows the simulated rectangular single crys
based on Eq.~8! with different values ofk̃11 andk̃22, infer-
ring the relative growth rates in two different directions. A

FIG. 5. The free energy dissipation during the course of crys
lization showing~a! a monotonous decay over the long time sc
corresponding to Fig. 4~a!; and~b! a discontinuity in the free energ
curve caused by the excess free energy due to successive su
nucleation events taking place on a shorter time span correspon
to Fig. 4~b!.
-
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surface nucleation occurs before the lateral growth along
entire strip has been completed, the longer side of the sin
crystal appears serrated on the molecular level and cur
but it is flat and smooth on the shorter side. If the growth r
G were sufficiently small~i.e., in regime I!, the pattern
would resemble the lathelike single crystal similar to th
observed in thes-PP single crystals@35,36#.

In Figs. 7~a!–7~d! we show the effect ofW values on the
emerging patterns of the single crystals. Basically increas
W value corresponds to reducing the individual values ofk̃11
andk̃22, keeping their ratio constant. PhysicallyW serves as
a factor to alter the steepness of the nucleation barrier.
larger theW value, the steeper the barrier, and thereby
harder it is for the surface nucleation to occur. This in tu
implies that the surface nucleation rateG would be much
smaller relative to the lateral growth rateg. At a certain large
W value for a given set ofk̃11 and k̃22, the crystal would
eventually cease to grow in the direction normal to t
longer side. When this occurs, the calculated patterns@Fig.
7~d!# resemble a thin lathelike single crystal. On the oth
hand, when theW value is reduced, the curvature in th
longer side would become more pronounced due to the
crease in the surface nucleation rate@Fig. 7~a!#. At interme-
diate values ofW, the barrel~truncated curved texture! to
axial-like patterns would emerge@Figs. 7~b! and 7~c!#.

B. Application to diamond-shaped single crystals
in polyethylene

1. Crystallographic representation

As is well known, the unit cell of polyethylene~PE! crys-
tal is orthorhombic with cell dimensions ofa50.736 nm,b

l-

ace
ing FIG. 6. Various rectangular single crystals calculated based

Eq. ~10! using G̃50.1894,W55.086,z50.256, andk̃11
2 50.1063,

with various values ofk̃22
2 : ~a! 0.1063,~b! 0.1532,~c! 0.2083,~d!

0.2721,~e! 0.3445, and~f! 0.4254.
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50.492 nm, andc50.254 nm, in which the molecular chain
align parallel to thec axis and on the average two chains pa
through one unit cell@1#. Figure 8 depicts a rhomboidal la
tice model, projected onto the~001! plane with thex and y

axes being parallel to the (11̄0) and~110! planes, respec
tively. The angle between thex andy axes isa5112.5°. The

FIG. 7. The calculated single crystal patterns in the crystal or
parameter field showing various textures ranging from oval
needlelike shapes. The calculation was undertaken according to

~10!, using G̃50.1894, k̃11
2 50.1063, k̃22

2 50.4254, andz50.256,
with variousW values.

FIG. 8. A schematic representation of a polyethylene unit c
with the plane of projection perpendicular to the chainc axis. The
nominal crystallographic dimensions of the body centered ort
rhombic unit cell are a50.736 nm, b50.492 nm, and c
50.254 nm. The filled and unfilled circles denote CH2 groups in the
plane and out of the plane of the paper, respectively. The solid
represents the crystallographica andb axes. The rhomboidal lattice
is constructed in terms of thex andy axes denoted by the bold soli
line, with an angle ofa5112.5°. The dotted line represents th
~110! growth front, whereas the dash dotted line represents
~100! growth front.
s

growth along the~110! plane takes places normal to bothx
andy axes, whereas the growth along the~100! takes place in
perpendicular to the crystala axis.

2. Model

In PE single crystals the growth takes place along fo
sectors with growth fronts parallel to the~110! planes. In
order to compute the growth of PE single crystals using
experimental data~i.e., material parameters! in real dimen-
sions of space and time, we shall employ Eq.~6! directly.
Furthermore, it is advantageous to simulate the growth of
single crystals on a rhomboidal lattice rather than a squ
lattice for which Eq.~6! may be rewritten as

]c

]t
52GFWc~c21!~c2z!2k2¹2c22 cos~a!k2

]2c

]x ]yG ,
~11!

The detailed derivation of Eq.~11! is presented in the Ap-
pendix according to Eq.~A10!.

Next, to relate the model parameters such asW, k, G, and
z to the material parameters, we follow the approach of R
@31#, @37#, and @23#. The excess free energy at the interfa
~or the surface! energys may be evaluated in accordanc
with Cahn and co-workers’ approach@31,37#, i.e.,

s

nRT
5E

0

1

kA2 f localdc, ~12!

wheren is the molar density of the mixture. AtT5Tm the
surface energy is given from Eq.~3! as

s

nRT
5

k

6S W

2 D 1/2

. ~13!

Further, the interfacial thicknessd is estimated as

d5kS 1

2 f local max
D 1/2

. ~14!

Using Eq.~3!, we obtain

d54kS 2

WD 1/2

. ~15!

Integrating Eq.~3!, one obtains

D f local52
DHu

nRTS 12
T

Tm
D5

W

6 S z2
1

2D . ~16!

According to Harowell and Oxtoby@38#, G can be related to
the velocityv of the interface as follows:

v52
3

2A2
GdD f local. ~17!

Solving Eqs.~3!, ~13!, ~15!, and~16!, one obtains

W548
s

nRT

1

d
, ~18!
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k25
3

2

s

nRT
d, ~19!

z5
1

2
2

DHu

8 S d

s D S 12
T

Tm
D . ~20!

The TDGL equation in Eq.~11! may be solved numeri
cally on the rhomboidal lattice defined in terms of thex-y
coordinates as depicted in Fig. 8. The thermodynamic
fixed parameters used in Eqs.~17!–~20! are listed in Table
I~a!. Using l * 51.25 nm andD55310212m2/s, and solving
Eqs.~17!–~20!, we obtained the values of the reduced co
ficients of Eq.~11!, as listed in Table I~b!.

Figure 9 shows the crystallization order parameter fi
manifesting the growth sequence of a diamond-shaped si
crystal. A stem each is deposited on each side of the lat
i.e., at the lateral edges of all four-crystal fronts via surfa
nucleation. The growth occurs rapidly by spreading alo
these edges. If the lateral growth along the edge is m
faster than the growth normal to it, the sides of the diamo
shaped single crystals would be sharp, thus it is analogou

TABLE I. Model parameters calculated based on Eqs.~17!–~20!
using the material parameters listed.

~a! Material parameters ~b! Model parameters

DHu
a 2.83108 J m23 G 0.034 s21

T 350 K k2 2.149310216 m2

Tm
a 387 K W 6.8783103

v 131028 m s21 z 0.256
d 131029 m
sa,b 0.0137 J m22

aFor solvated PE crystals@7#.
bThe surface energys is approximated ass l50.0137 J m2 @7#.

FIG. 9. The spatiotemporal growth of the diamond shaped p
ethylene crystal in the crystal order parameter field calculated
cording to Eq.~11!, with the coefficients listed in Table I.
d

-

d
le
e,
e
g
h
-
to

the regime I growth proposed by the original LH theor
However, if the surface nucleation rate is sizable relative
the lateral growth rate, a new nucleation event occurs on
advancing strip before all the sites on these lateral edges
fully filled. As shown in Fig. 9, the diamond-shaped sing
crystals reveal serrated rough edges on all sides. It is ap
ent that the present model can capture the serrated topo
depending on the relative growth rates along the edge
normal to it.

Although polymer single crystals are essentially flat th
lamellar crystals, the crystal growth is known to be a thre
dimensional problem. A natural question arises as to whe
there is any difference in the single crystal growth behav
in the 2D and 3D simulations. We undertook this task for t
3D case by rewriting Eq.~11! and performing the simulation
on a smaller cubic lattice (64364364) to avoid tedious cal-
culation and the problem of memory overflow.

Equation~11! is modified to include thez axis, which is
parallel to the crystalc axis and perpendicular to thex-y
plane.

]c

]t
52GFWc~c21!~c2z!2kx,y

2 S ]2c

]x2 1
]2c

]y2 D
2kz

2 ]2c

]z2 22 cos~a!kx,y
2 ]2c

]xy G , ~21!

The model parameters can be related to the materials pa
eters as follows:

W548
s l

nRT

1

d
, ~22a!

kx,y
2 5

3

2

s l

nRT
d, ~22b!

kz
25

3

2

se

nRT
d, ~22c!

z5
1

2
2

DHu

8 S d

s l
D S 12

T

Tm
D . ~22d!

Equation ~21! was solved for a 3D growth settingl x,y*
51.25 nm,l z* 510 nm, andD55310212 m2/s, along with
the material parameters listed in Table II~a!. The model pa-
rameters in Table II~b! were calculated in accordance wit
Eqs. ~22a!–~22d! using the material parameters of Tab
II ~a!. Figure 10 illustrates the cross sections in thex-y and
x-z planes of the emerging PE single crystal calculated
three dimensions. The first column shows the top view
hibiting a diamond-shaped topology, whereas the second
umn manifests the side view representing the lamellar th
ness. It is seen that growth occurs exclusively in the late
direction, and virtually ceases in the thickness direction
cause of the high penalty for nucleation to occur on
folded lamellar surface relative to the sides. Hence the nu
ation on the folded surface is highly unfavorable, leading
growth in the lateral directions; this is exactly what one o
serves experimentally. In practice, some crystal defects
impurities on the folded surface could act like nuclei up
which new single crystal layers can grow successively on

-
c-
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existing single crystal surface. However, the present theo
ical model is not designed to account for the multilay
growth of single crystal mats.

C. Curved single crystal in polyethylene

Another interesting feature in polymer crystallization
the growth of curved single crystals. The curved crystals
polyethylene are formed by growth along six growth fron
two normal to the (1̄10) and~110! planes, and two normal to

TABLE II. Model parameters calculated based on Eqs.~22a!–
~22d!, using the material parameters listed.

~a! Material parameters ~b! Model parameters

DHu
a 2.83108 J m23 G 0.034 s21

T 350 K kx,y
2 2.149310216 m2

Tm
a 387 K kz

2 14.12310216 m2

v 131028 m s21 W 6.8783103

d 131029 m z 0.256
sx,y

a,b 0.0137 J m22

sz
a,b 0.09 J m22

aFor solvated PE crystals@7#.
bThe surface energies are approximated assx,y5s l , sz5se , s l

50.0137 J m2, andse50.09 J m2 @7#.

FIG. 10. The spatiotemporal growth of a polyethylene crysta
the crystal order parameter field calculated according to Eq.~21!,
with the coefficients listed in Table II. The simulated patterns in
first column represent the diamond shaped single crystal in thex-y
plane, whereas those in the second column show the lamellar th
ness in thex-z cross section. The simulations were carried out o
64364364 lattice.
t-
r

n
:

the a axis @along the~100! plane#. In this paper, we propose
that the growth along these various crystallographic pla
can be modeled simply by employing different values ofk
normal to these planes. The interface gradient coefficient
sor in dimensionless unitsk̃ can be written as sum of th
corresponding tensors for the two growth fronts, viz.,

k̃5k̃110
i j 1ap*

iaq*
j k̃100

pq , ~23!

wherek̃1105$ 0 k̃110

k̃110 0
% and k̃1005$ 0 0

k̃100 0
%; i , j ,p,q51,2.

The second term in Eq.~23! is simply the coordinate
transformation from thea-b coordinate to thex-y coordinate
with a transformation tensor given as

a5
a21b2

4a2 H 1 21

21 1 J .

The governing equation in the dimensionless form is thu

]c

]t
52G̃@Wc~c21!~c2z!2“̃•$k̃•~ k̃•“̃c!%#, ~24!

where the derivation of“̃•@ k̃•(k̃•“̃c)# is the same as tha
in real dimensions given by Eq.~A9! in the Appendix.

Equation~24! has been solved to investigate the effect
the relative values ofk̃100 andk̃110 on the shape of the grow
ing single crystal~Fig. 11! by varying the values ofk̃100
while keeping the value ofk̃110 constant. Whenk̃100 is zero,
one obtains a diamond-shaped crystal@Fig. 11~a!#, as dis-
cussed in Sec. III B. Whenk̃100,k̃110, the shape is that o
the curved crystal with smooth and serrated edges, i.e.,
growth front along the four~110! planes is smooth and flat

e

k-
a

FIG. 11. The simulated curved crystals in the crystal order

rameter field according to Eq.~24!, with G̃50.1894,W55.086,z
50.256, andk̃110

2 50.1063, showing various topologies of curve
single crystals:~a! a diamond shaped single crystal,~b! a lozenge
shaped curved single crystal,~c! a lenticular curved single crystal
and ~d! a slender curved single crystal.
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while that along the two~100! planes is serrated and hen
curved@Fig. 11~b!#. These features are in good accord w
the observed PE single crystals@8# as well as that simulated
by Miller and Hoffman@11,12#. The advantage of the prese
approach is that it is unnecessary to treat the growth sec
differently as done by Miller and Hoffman@11,12#, who con-
sidered the growth of the~110! sector to be governed by th
flat edge mechanism and the~100! front to be serrated on th
molecular level. Simple relative values ofk̃100 and k̃110 ap-
pear sufficient to generate various topologies encompas
diamond-shaped to lenticular and curved single crystals w
straight and/or serrated edges. Whenk̃1005k̃110, a lenticular
crystal emerges@Fig. 11~c!#. Moreover, if k̃100.k̃110, then
slender single crystals emerge@Fig. 11~d!#; thus it is in good
agreement with the morphology reported by Point and V
lers @15#. It is seen that the number of time steps required
reach comparable sizes of the single crystals decreases
an increasingk̃100 value.

D. Conclusions

The spatiotemporal evolution of the nonconserved cry
order parameter based on the TDGL model A shows face
single crystal growth with the features reminiscent of regi
I, i.e., the spreading of the stems on the lamellar strip. Ho
ever, a new stem could be deposited on the newly form
strip before all the sites are fully filled, particularly when th
size of the single crystal becomes large. That is to say w
the nucleation controlled growth rateG, is close to the latera
growth rateg, there is a crossover in behavior from regime
to regime II. The front edge becomes serrated and eventu
evolves to a curved crystal. The total free energy den
decays in a rhythmic manner in synchronism with the nuc
ation event, i.e., the monotonic decay of the free energy d
ing growth is raised periodically by the excess free ene
associated with each nucleation event on the newly form
lamellar strips. The simulation with the tensor forms of t
interface gradient coefficients based on the TDGL mode
captures the emergence of various topologies encompas
square, rectangular, diamond-shaped, and curved single
tals. In 3D simulations, the single crystal grows exclusiv
by spreading in the lateral sides as compared to that in
thickness direction due to the high penalty for nucleation
occur on the folded lamellar surface relative to the sides
should be emphasized that the aforementioned crystal gro
behavior cannot be accounted for by regular front propa
tion models such as the classical Fisher-Kolmogorov eq
tion or its modifications@17#, as these equations lack met
stability for nucleation.
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APPENDIX: DERIVATION OF FUNCTIONAL
DERIVATIVE dF Õdc

The functional derivativedF/dc may be expanded in ac
cordance with the well-known identity relation of Lagran
ian mechanics@39#:
rs
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dF

dc
5

] f cryst

]c
2¹

] f cryst

]¹c
. ~A1!

The first term may be decomposed as

] f cryst

]c
5

] f local

]c
1

] f grad

]c
,

and, using Eq.~4!, gives

] f cryst

]c
5

] f local

]c
1

]

]c F1

2
~k•“c!2G

5
] f local

]c
1~k•¹c!•S k•

]

]c
¹c1¹c•

]

]c
kD .

Assumingk to be independent ofc, one obtains

] f cryst

]c
5

] f local

]c
. ~A2!

On the other hand, the second term of Eq.~A1! may be
deduced further as follows:

] f cryst

]¹c
5

] f local

]¹c
1

]

]¹c F1

2
~k•“c!2G

5F ]

]¹c
~k•“c!G•~k•“c!

5S ]¹c

]¹c
k1¹c

]k

]¹c D •~k•“c!5k•~k•“c!.

Hence

¹
] f cryst

]¹c
5“•@k•~k•¹c!#. ~A3!

From Eq.~3!, we have

] f local

]c
5Wc~c21!~c2z!. ~A4!

Substituting Eqs.~A2!, ~A3!, and~A4! into Eq. ~A1! gives

dF

dc
5Wc~c21!~c2z!2“•@k•~k•¹c!#. ~A5!

Substituting Eq.~A5! into Eq. ~1! leads to the governing
equation, i.e.,

]c

]t
52G

dF

dc
52G$Wc~c21!~c2z!2“•@k•~k•“c!#%,

~A6!

thereby recovering Eq.~6!.
The term“•@k•(k•¹C)# in Eq. ~A6! is further given by

the expression
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“•@k•~k•“c!#5“•H k•Fk•S ]c

]xj êj D G J for j 51,2

5“•Fk•S k i j
]c

]xj êj D G for i 51,2

5“•S k mngnik
i j

]c

]xj êi D for m,n51,2,

~A7!

“•@k•~k•“c!#5k mnk i j gni

]2c

]xm ]xj ,

where êx,êy and êi ,êj are covariant and contravariant un
vectors inx andy directions:

H g i j 51 if i 5 j ,

g i j 5cos~a! if iÞ j .
~A8!

Since cos(a)50, the metric tensorg in the rhomboidal lattice
becomes a Kroneckerd in the square lattice. If the tensork is
-
ry
taken such thatk215k12 andk115k22 then Eq.~A6! can be
expanded as

¹•@k•~k•¹c!#5@~k11!
21~k12!

212 cos~a!k11k12#

3S ]2c

]2x
1

]2c

]2y D12$2k11k121cos~a!

3@~k11!
21~k12!

2#%
]2c

]x ]y
. ~A9!

In a specific case wherek215k1250 andk115k225k, Eq.
~A6! leads to Eq.~11!, i.e.,

]c

]t
52GFWc~c21!~c2z!2k2¹2c22 cos~a!k2

]2c

]x ]yG .
~A10!

It should be noted that the present derivation is valid for
dimensionless case, i.e., the same as the renormalized
ficient of interface gradient term in Eq.~24!.
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