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Spatiotemporal growth of faceted and curved single crystals
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The spatiotemporal growth of single crystals in a crystalline polymer has been investigated theoretically
based on a nonconserved time dependent Ginzburg-Landau eqatimnn as TDGL model A In the
description of the total free energy, a double-well local free energy density signifying metastability of crystal
ordering is combined with a nonlocal free energy term representing an interface gradient. The resulting
nonlinear reaction diffusion equation after renormalization possesses a solitary wave property. Two-
dimensional numerical calculations were performed to elucidate the faceted single crystal growth including
square, rectangular, diamond-shaped, and curved single crystals. A three-dimensional simulation was also
undertaken for the emergence of diamond-shaped single crystals in polyethylene. Of particular importance is
that the model field parameters can be linked directly to the material parameters of polyethylene single crystals.
Simulation with various elements of the interface gradient coefficient tensor captures various topologies of
polymer single crystals.

PACS numbses): 61.41+e, 81.10.Aj, 87.15.Nn

[. INTRODUCTION the growth of such curved crystdl8]. Subsequently, Sadler
introduced a surface roughening concept to explain the
A rich variety of polymer morphologies ranging from curved crystal growth, and concluded that growth sectors
single crystals to spherulites have been reported over a hatuch as(110 and (100 planes grow at different rates,
century[1-4]. The former have been generally grown from thereby resulting in curved single crystals. Miller and Hoff-
polymer solution, whereas the latter are commonly observechan[11,17 contended that the faces in polyethylene single
during crystallization from the melt by either isothermal crystal lamellae exhibiting curvature are the slowly growing
crystallization or cooling below the crystallization tempera- (100 plane, but not the fast growind 10 front. They modi-
ture. Recently, it has become apparent that some polymdied the nucleation theory with the idea that the growth in the
single crystals can be grown from the melt as WBIl The (110 sector is governed by the flat edge mechanism as pro-
wealth of experimental evidence on polymer morphologyposed in the original LH model, but the growth at €90
and crystallization kinetics is appealing for theoretical develfront takes place as serrated on the molecular level.
opment. However, these morphologies are kinetically solidi- Mansfield[10] calculated the nucleation of a stem on an
fied, and thereby nonequilibrium in nature. It is difficult to existing flat substrate and subsequent spreading events based
rationalize all these nonequilibrium structures in a coherenbn the continuum approach originally proposed by Frank
manner without understanding how these structures emerdé3] using the moving boundary equation. The Mansfield
during isothermal crystallization. Hence it is essential to in-model captured the growth behavior of regime(dl multi-
vestigate the spatiotemporal growth of crystalline texturesnucleation regimeand regime Ill(a multinucleation regime
Numerous theoretical efforts have been directed to the eluciwith rough surfaceswith various spatial growth topologies
dation of crystallization habits and emerging morphologiesincluding lozenges and curved single crystals, but it cannot
of semicrystalline polymers; however, a unified opinion hasaccount for the growth in the mono-nucleation regithe.,
yet to emerge, particularly a theoretical elucidation of thethe so-called regime).| Tanzawa and Tod§f14] simulated
polymer crystal growti6—14). various single crystal topologies based on the Mansfield
One of the most tested theories in polymer crystallizationrmodel using a Monte Carlo approach. They concluded that
is the Lauritzen-HoffmarfLH) nucleation theory, which de- their simulation conforms remarkably well to the theoretical
scribes the deposition of a stem on a flat substrate and thexpression of Mansfield10]. However, Point and Villers
subsequent attachment of additional stems on adjacent sidgk5] argued that Mansfield’s solution is not exact, and is
[6,7]. The original LH theory has been applied to the kineticsincapable of explaining curved 00 crystals of large exten-
of rectangular and/or diamond-shaped single crystal growtBion ratios. They proposed a unified model that mediated
with straight edges. However, it has been found experimenbetween the nucleation-controlled growth and the surface
tally that some solution grown as well as melt grown singleroughening mechanism. Their computation based on the
crystals exhibit curved topologigg,8]. Sadler pointed out a modified Frank equation in conjunction with Sadler’s surface
potential deficiency of the original LH theory in explaining roughening conditions captured the highly elongated curved
crystals as well as the bisectorization of lanceolated crystals
observed experimentally in RéfL6]. The original LH theory
* Author to whom correspondence should be addressed. Electron[6,7] and its modification$11,12], as well as the alternative

address: tkyu@uakron.edu models[9,10,14,1%, have their own merits in explaining
"Present address: Gentex Optics, R&D Materials Division, Dud-various crystallization habits, but an agreed upon opinion has
ley, MA 01571. yet to emergé5].
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The original LH kinetic theory describes a temporal crys-expanded in terms of the crystal order parameter. The result-
tal growth, but it lacks spatial diffusion of the interface. ing nonlinear reaction diffusion equation can be solved nu-
Hence most simulations pertaining to the spatiotemporaimerically on a square lattice (25&®56) using a finite dif-
growth of polymer single crystals utilize the classical Frankference method for spatial steps, and an explicit method for
model [13] that involves calculations with a moving front temporal steps with an absorbing boundary condition. The
having a crystal-melt interface of zero thickness. Such &imulation has been performed using various temporal steps
moving front with a discrete interface often leads to math-(At) on several grids (6464, 128<128, 256<256, and
ematical complicationg13]. To circumvent the moving 512x512) to assure stability of the c'omquanon; however,
boundary problem, it is advantageous to employ front propa@nly the results of (258 256) for two-dimensional2D) and
gation with a crystal-melt interface of nonzero thickness or & 64X 64x64) for 3D simulations are shown here to avoid

finite interface gradient such as propagation of interface iffUmpbersome calculation. The spatiotemporal growth of vari-
the form of a solitary wavé17], but with an appropriate free ©US forms of polymer single crystals has been demonstrated

energy to capture the physical essence of crystallization. 2nd subsequently compared with the diamond-shaped poly-

We proposed a “phase field” model in which the entire e_thylene single crystals using the literature values for mate-
spatial field is treated in the context of a time dependenfi@S Parameters involved.
“phase” order parameter, which describes the local state
phase of the system in time and spa¢&8-25. It is thus Il. THEORETICAL SCHEME
possible to express the entire system as a continuous field . . L .
with thermodynamic variables as a function of the phase or- The tme-dgpendent .Glnzburg-Landau equation is basi-
der parameter. Such a model eliminates the sharp edges 8?"3' an equation of motion that relates the tempqral change
the interface inherent in the moving boundary apprdd&h, of a phase .order parqmet@r.g., a local concentratlaarno a
and thus can be solved numerically. The phase field mod%l?cal chemical potential a_nd a nonlocal interface gradient.
derived from the coupled time-dependent Ginzburg-Landal he TDGL model A_equat|on for a nonconserved order pa-
(TDGL) model C[26,27 has been successfully applied to fameter is customarily expressed[as,27
the crystal growth in metal alloyg23] and eutectic crystal

. ; AP(r,t) SF

growth[28]. Recently, a similar methodology was applied to =—T—, (1)
the elucidation of rhythmic growth of concentric and spiral at oy
spherulites in a binary polymer blend containing a crystalline _
polymer as one componef9]. In model C, the conserved Wherey represents the crystal order parameter, Bnsl the
compositional order parametgiconcentration or volume Mmobility. F is the total free energy of the crystal ordering,
fraction of the blenl and the nonconserved crystal order Which may be defined as
parameter are coupled in nonlinear reaction diffusion equa-
tions [23,28,29. The total free_ene(gy density involves a FW)ZJ forysl )2, )
Landau type double well potential with respect to the crystal
order parameter for crystallizatig29] and a Flory-Huggins
free energy density for a demixing of the blefRD]. For a
single component system, the nonlinear differential equatio
involving the conserved compositional order parameter be
comes unnecessary. Hence, the two-coupled TD@bdel
C) equations can be reduced to a single nonlinear TDGL ’ 1
(model A) equation with a nonconserved order parameter ¢ )=\ | y(y— 1)( = 5- a(T))dw:\N[ {(T)
pertaining to crystallization, hereafter called a crystal order 0
parameter. Note that for a more complex case where the free 3 4
energy functionals for density and orientational crystal order —[1+&(T)] £+ ‘ﬁ_
parameters are different, the two coupled model A equations 3 4]
of the individual order parameters may be employed. In ad-
dition, all sharp interface problems have been shown to arisehere{(T)=1/2+ 6(T), andW is a dimensionless constant.
as a particular limit of the phase fie[@0]. In the dendritic ~ As will be demonstrated in a later sectidd(T)| is a quan-
growth of snowflake$22], it is necessary to couple with the tity that can be related to supercooling and heat of fusion. As
heat balance equation in the phase field model. However, thghown in Fig. 1, the local free energy density has a double
mass diffusion of polymer molecules is extremely slow rela-well shape with respect to the crystal order parameier
tive to the heat flux, such that the temperature field can b&hysically,»=0 represents the melt, where@s- { implies
regarded as uniform during isothermal crystallization. Hence crystalline state. At the crystal melting temperafligg the
the effect of heat balance coupling on the emerging polymefree energy densities for the crystalline state and the melt are
crystals, if any, would be negligible. equivalent. WhenT<T,,, the free energy density of the

In this paper, we deduce a theoretical model based on therystal ordering has a global minimum ét=1. The solid
TDGL model A by taking into consideration a double well crystal phase is therefore a stable phase as it has the lowest
potential with respect to a crystal order paramg¢Z] to  free energy, and thus the melt is metastable. On the other
capture the metastability of the polymer melt subjected tdand, whenT>T,,, the global minimum of the free energy
crystallization. The total free energy is composed of a nondensity is aty=0, which represents a stable melt; thus all
local gradient term and a local free energy density that isrystals must melt.

where the total free energy of the crystal ordering consists of

local free energy density and a nonlocal gradient term, i.e.,
fcryst™ flocart fgraa- The local free energy density in turn may
be given in the form of the Landau expansion[23,25,29
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IIl. RESULTS AND DISCUSSION

0.04 A. Faceted single crystals

Faceted single crystals in polymers are essentially thin
layer lamellar crystal$l]. Although simplified in many as-
pects, this rendition of a planar two-dimensional lamellar
crystal serves as a basis for elucidating various fundamental
| features that pertain to the emergence of morphology of bulk
l polymer crystals. The lateral growth in the lamellar crystal
i \ /r <T, may be viewed as the addition of fresh stems that reflects the
! unit cell geometry of the polymer crystid—5]. The lamellar

0.02 ‘ crystals have well defined shapes predominantly in rectangu-
-0.5 0.0 S 05 1.0 1.5 lar or truncated rectangular shapes. However, for the purpose
Crystal Order Parameter v of demonstration, we shall first consider the simplest case of

isotropic growth, i.e., equal growth rates along the two lat-

FIG. 1. Schematic plot of the local free energy density anderal edges that give rise to a square single cn&2J. The
crystal Cl’)fldef pafa“:)eteﬁ_’f fc:j Varioﬁs temper?_wfef Sho‘éVing tlhe elements of the interface gradient coefficient tensor in di-
metastable ener arrier for a ase transition from the t i i Ao — % — -~
=0) to the crystgl)lline state¢(=1)pwith equilibrium atT,,. et TEHSE)QIESS_ units may be .taken -aﬁ_ Kop=k andi;,

="k»7=0 which, when combined with Ed8), lead to

0.02

0.00

Local Free Energy Density

The nonlocal free energy density may be described in Y _ R
terms of the gradient free energy density as 5.~ W=D (y—= ) —&V7Y]. 9
1 2
fgrac(‘/’)zi["'v‘/’] ' 4 It is well established that nucleation can be triggered

through generation of strong thermal noise or seeded with a
where k is the interface gradient coefficient, alis the  foreign object. In the present case, a nucleation event is trig-
space derivative operator. In order to take into account thgered with a single nucleus at the center of the lattice having
surface energetic at two growth fronts, we consisleas a  a Gaussian profile such tha{(r)=exp(—r%R?), R being the

second rank tensgB1], i.e., radius of the initial nucleug33]. It should be pointed out that
the nucleus could be of any shape, for instance in the form of
| K K12 thermal noise, as it is inconsequential to the spatiotemporal
K= Koi Kool (5) growth of a single crystal. That is to say the crystal spreads

along a given substrate by depositing new stems on adjacent
It should be noted that the tensorial representatior ofas  sides and eventually emerges to a square skigige 2), al-
originally proposed by Cahn and Hilliard, but it was treatedthough the crystallization begins with a round nucleus.

as scalar for simplicity in their original papgsi]. Figure 3 shows the detailed growth events of the same
Substituting Eqs(2)—(5) into Eqg. (1), one obtains single crystal over a short time span in which a new stem is
deposited at a lamellar front that constitutes surface nucle-

Y oF ation. In this nucleation event, excess surface free energy is
T “TIWP=D) (= =V -{we (e VI roated while the bulk free energy decreases due to growth.

(6)  The additional stems are attached in adjacent positions on
each side, and spread in both directions along the lateral
The derivation of the functional derivativéF/ 6y in Eq.(6)  strip. The lateral spreading of the stems may be characterized
is given in the Appendix. It is customary to express theas lateral growth with a raig which occurs on all four sides.
above equation in a dimensionless form with dimensionlesghis lateral growth is analogous to the substrate completion
time 7 and dimensionless variables denoted with tilde sym-process in regime[I7,10]. The fact that the growth along the
bols as follows: lateral edge is favored over the growth normal to it is simply
due to the high cost of the nucleation process. The formation
7 of a new strip(nucleation may be viewed as the growth
normal to the lateral edge which is usually characterized as
the nucleation-controlled growth with a rate denot&dt is
wherel* is the characteristic length, aid is the diffusion  gpparent that the growth rate along the lateral edpés
coefficient. Substituting Eq7) into Eq.(6) leads to the final greater than that normal to i&. However, a new nucleation
governing equation as event could occur before all lateral sites are completely
o filled, in particular when the crystal size becomes very large.
v _ T e (. T Strictly speaking, the present finding is at variance with the
ar TIWy(y=1)(y=0) =V {& (& V)il @ classical picture of regime I, where all sites must be com-
5 5 pletely filled before a new nucleation could occur on the just
where T=TI1*?/D, kij=%k;j/I*, and V=(d/dx)&  completed strip. It is also different from regime Il, where
+(0/4y)&Y; & and@&’ being covariant unit vectors inandy =~ more than two nuclei can form on the same sf&pl0].
directions. Figure 4a) shows the temporal change of the crystal size

X Y
IT, Y= T=

D

X= |*2t;
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1200 1400 FIG. 4. The variation of the single crystal size with time steps;

£h0wing (a) apparent linear growth with a nucleation controlled
growth rateG over a time scale corresponding to Fig. 2; dbga
change in dimension of the single crystal across the center with a
growth rateG and along the lateral edge, with a lateral growth rate
g over a shorter time span corresponding to Fig. 3.

FIG. 2. The emergence of the square single crystal in the cryst
order parameter field calculated according to Eg), with T
=0.1894,W=5.086,{=0.256, andk?=0.1063 on a 258 256 lat-
tice, showing the temporal increase in the single crystal size.

over a long time. The detailed growth behavior may be best
characterized in comparison with the lateral grovghread-

ing of the stempalong the strip in a shorter time spHFAg.

4(b)]. The initial increase of the crystal size is due to the
attachment of a new stem on the strip representing surface
nucleation. The crystal size remains unchanged until the en-
tire edge has been filled, then the size increases by an amount
of the width of a single stem in the second nucleation event.
The lateral growth along the strip exhibits a nonlinear
(sigmoidal-like growth during stem propagation. However,

if the crystal size were sufficiently large, the growth curve
will be stretched out such that the intermediate interval may
be approximated by a linear slope to roughly estimate the
lateral growth ratey. The lateral growth slows down asymp-
totically when the spreading is near completion, as shown in
Fig. 4b). Then the crystal size increases again during the
subsequent nucleation cycle. Of particular interest is that the
present calculation captures the square single crystal as ob-
served in poly(4-methyl-penteneJl[32], although pattern
matching is not the main objective of the present study.

As expected, the overall decay of free energy with time
appears monotonid=ig. 5@)]. However, if one carefully ex-
amines the intricate details of the free energy dissipation dur-
ing the individual events of nucleation and growth as exem-
plified in Fig. 5b), the free energy decays in a rhythmic
manner with time. This observation is not surprising in view
of the fact that the surface nucleation generates excess free
energy; thus it raises the bulk free energy periodically when-

FIG. 3. The enlarged version of the emerging single crystal ofever a new nucleation event occurs. Consequently, the result-
Fig. 2, at an interval of 202—214 time steps, exhibiting surfaceant free energy curve shows a rhythmic character, i.e., the
nucleation on four sidegsee 204 followed by spreading of the free energy humps appear periodically by overlapping on the
stems along the edge¢804—214. montonically decaying free energy. Of particular importance
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FIG. 5. The free energy dissipation during the course of crystal-
lization showing(a) a monotonous decay over the long time scale
corresponding to Fig.(); and(b) a discontinuity in the free energy (€)¥%, =0.3445 (£)®2, =0.4254
curve caused by the excess free energy due to successive surface
nucleation events taking place on a shorter time span corresponding FIG. 6. Various rectangular single crystals calculated based on
to Fig. 4b). Eq. (10) usingT =0.1894,W=5.086, {=0.256, andk?,=0.1063,

with various values oﬁ%z: (a) 0.1063,(b) 0.1532,(c) 0.2083,(d)
is that this rhythmic energy dissipation occurs in synchro 2721 (e) 0.3445, andf) 0.4254.

nism with the successive surface nucleation followed by the _
lateral growth. surface nucleation occurs before the lateral growth along the

In practice, different faceted fronts grow with different entire strip has been completed, the longer side of the single
rates. Hence the single crystals thus formed would have difcrystal appears serrated on the molecular level and curved,
ferent shapes such as rectangu|ar or diamond shapes_ Lotﬁ.;lt it is flat and smooth on the shorter side. If the growth rate
Lovinger, and Cai$34] found that syndiotactic polypropyl- G were sufficiently small(i.e., in regime }, the pattern
ene (PP single crystals grown from the melt have an Wwould resemble the lathelike single crystal similar to that
orthorhombic unit cell with dimensions=1.45nm, b  observed in the-PP single crystal§35,36.
=1.12nm, andc=0.74nm. Apparently, the growth along  In Figs. 7a)-7(d) we show the effect ofV values on the
the (010 plane is greater than that of tii00) front; there- emerging patterns of the single crystals. Basically increasing
fore, thes-PP single crystal is highly anisotropic showing a W value corresponds to reducing the individual value® gf
lathelike (rectangular appearance with the long axis along andk, keeping their ratio constant. Physically serves as
the b-axis direction and the short axis along #rexis direc- ~ a factor to alter the steepness of the nucleation barrier. The
tion. Later, Buet al.[35] showed that the-PP single crystals larger theW value, the steeper the barrier, and thereby the
often exhibit sectorization a|ong the diagona|s in which twoharder it is for the surface nucleation to occur. This in turn
pairs of microsectors are seemingly twinned. Further invesimplies that the surface nucleation raBwould be much
tigation using atomic force microscopy and electron diffrac-smaller relative to the lateral growth rageAt a certain large
tion revealed that the lamellar thickness in the two sectors i¥V value for a given set oky; and’x»,, the crystal would
different, showing different folding habits. These observedeventually cease to grow in the direction normal to the
textures have been ascribed to result from the different foldonger side. When this occurs, the calculated pattéfit.
energies in the two sectof86]. 7(d)] resemble a thin lathelike single crystal. On the other

To obtain a lathelike single crystal, the elements of thehand, when theW value is reduced, the curvature in the
interface gradient coefficient tensor in dimensionless unitsonger side would become more pronounced due to the in-

may be set a&,,# %, andi,=%»;= 0. Substituting in Eqs.  crease in the surface nucleation rgfeég. 7(a)]. At interme-
(5) and (6), one obtains diate values ofw, the barrel(truncated curved texturdo

axial-like patterns would emerdé&igs. 1b) and 4c)].

1/ _, Py, Py

57 - NWe=D(§= )~ | Kirzz + Kz || B. Application to diamond-shaped single crystals
(10) in polyethylene

Figure 6 shows the simulated rectangular single crystals 1. Crystallographic  representation

based on Eq(8) with different values ofc;; and’x,,, infer- As is well known, the unit cell of polyethylen®E) crys-

ring the relative growth rates in two different directions. Astal is orthorhombic with cell dimensions af=0.736 nm,b
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(a) W = 2.54 at 1450 time steps

(d) W =17.62at 1000.

(c)W =535at1250
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(b) W =5.09at 1000

growth along thg(110) plane takes places normal to both
andy axes, whereas the growth along €0 takes place in
perpendicular to the crystal axis.

2. Model

In PE single crystals the growth takes place along four
sectors with growth fronts parallel to tH&10 planes. In
order to compute the growth of PE single crystals using the
experimental datdi.e., material parametersn real dimen-
sions of space and time, we shall employ Eg). directly.
Furthermore, it is advantageous to simulate the growth of PE
single crystals on a rhomboidal lattice rather than a square
lattice for which Eq.(6) may be rewritten as

2
= =T Wiy~ 1) (=0~ KPT2y2 cosa) |
1y

The detailed derivation of Eq11) is presented in the Ap-
pendix according to EqA10).

Next, to relate the model parameters sucMas, I', and
{ to the material parameters, we follow the approach of Refs.
[31], [37], and[23]. The excess free energy at the interface

FIG. 7. The calculated single crystal patterns in the crystal ordefor the surfaceenergyo may be evaluated in accordance

parameter field showing various textures ranging from oval towith Cahn and co-workers’ approa¢8l,37, i.e.,
needlelike shapes. The calculation was undertaken according to Eq.

(10), using T'=0.1894, %%,=0.1063, ¥2,= 0.4254, and{=0.256, o [t

with variousW values. nRT Jo < V2 Frocad ¥, 12

=0.492 nm, ana=0.254 nm., in which the molecular chains wheren is the molar density of the mixture. At=T,, the
align parallel to the axis and on the average two chains passSUrface energy is given from E(B) as

through one unit cell1]. Figure 8 depicts a rhomboidal lat- W 22
tice model, projected onto th@01) plane with thex andy 7 f( _) (13)
axes being parallel to the (D) and(110 planes, respec- nRT 6}2
tively. The angle between theandy axes isa=112.5°. The Further, the interfacial thicknes$is estimated as
1 1/2
=kl 5| . 14
( 2 fIocal mav) ( )
Using Eq.(3), we obtain
112
5=4«k v_v) . (15
Integrating Eq.(3), one obtains
Af AH, T\ W 1 16
oca™ " RTIIT T 6 (5 (16)

FIG. 8. A schematic representation of a polyethylene unit cellAccording to Harowell and Oxtob}38], I' can be related to
with the plane of projection perpendicular to the chaiaxis. The  the velocityv of the interface as follows:
nominal crystallographic dimensions of the body centered ortho-
rhombic unit cell area=0.736 nm, b=0.492 nm, andc 3
=0.254 nm. The filled and unfilled circles denote Gifoups in the V=" ﬁF5Aflocal- (17)
plane and out of the plane of the paper, respectively. The solid line
represents the crystallograpli@ndb axes. The rhomboidal lattice
is constructed in terms of theandy axes denoted by the bold solid Solving Eqgs.(3), (13), (15), and(16), one obtains
line, with an angle ofa=112.5°. The dotted line represents the
(110 growth front, whereas the dash dotted line represents the W—48LE (18
(100 growth front. nRT 6’
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TABLE I. Model parameters calculated based on E#jg)—(20) the regime | growth proposed by the original LH theory.

using the material parameters listed. However, if the surface nucleation rate is sizable relative to
the lateral growth rate, a new nucleation event occurs on the
(a) Material parameters (b) Model parameters advancing strip before all the sites on these lateral edges are
AH.2 2 8x 18 Im3 r 0.034 st fully filled. As shown in Fig. 9, the diamond-shaped single
- ! 350 K 2 2 149¢ 10~ 26 2 crystals reveal serrated rough edges on all sides. It is appar-
Ta 387 K W 6.878¢ 10° ent that_ the present mo_del can capture the serrated topology
m 1%10-8mst [ 0.256 depending on the relative growth rates along the edge and
l; 1%10-°m : normal to it.
2D 0.0137 J 2 Although polymer single crystals are essentially flat thin
' lamellar crystals, the crystal growth is known to be a three-
%For solvated PE crystald]. dimensional problem. A natural question arises as to whether
bThe surface energy is approximated as,=0.0137 J A [7]. there is any difference in the single crystal growth behavior
in the 2D and 3D simulations. We undertook this task for the
3 o 3D case by rewriting Eq.11) and performing the simulation
K2==—=35, (190  onasmaller cubic lattice (6464% 64) to avoid tedious cal-
2 nRT culation and the problem of memory overflow.
Equation(11) is modified to include the axis, which is
_ E_ AH, (f)( -~ l) (20) parallel to the crystat axis and perpendicular to they
2 8 \o Tm/) plane.
The TDGL equation in Eq(11) may be solved numeri- ap o [P P
cally on the rhomboidal lattice defined in terms of thg ot “DIWY =D (== riy 3_Xf+ ay?
coordinates as depicted in Fig. 8. The thermodynamic and 5 5
fixed parameters used in Eq4.7)—(20) are listed in Table 0 l/f_z , Y 21
I(a). Usingl* =1.25 nm and> =5x 10" 2m?%s, and solving Ko ggZ 2 008 a)KX'yaTy ’ @)
Egs.(17)—(20), we obtained the values of the reduced coef-
ficients of Eq.(11), as listed in Table(b). The model parameters can be related to the materials param-
Figure 9 shows the crystallization order parameter fieldeters as follows:
manifesting the growth sequence of a diamond-shaped single
crystal. A stem each is deposited on each side of the lattice, W= 481 E (229
i.e., at the lateral edges of all four-crystal fronts via surface nRT S’
nucleation. The growth occurs rapidly by spreading along
these edges. If the lateral growth along the edge is much 2 zﬁiﬁ 22h)
faster than the growth normal to it, the sides of the diamond- oy T2 nRT
shaped single crystals would be sharp, thus it is analogous to
23 0 22
2= nRT” (229
1 AHU< 5)( T )
=378 o ! Tm/ (229

Equation (21) was solved for a 3D growth settinlgyy
=1.25 nm,I* =10 nm, andD =5x 1012 m?s, along with
the material parameters listed in Tabléa]l The model pa-
rameters in Table (b) were calculated in accordance with
Egs. (2289—(22d) using the material parameters of Table
II(a). Figure 10 illustrates the cross sections in fig and
x-z planes of the emerging PE single crystal calculated in
three dimensions. The first column shows the top view ex-
hibiting a diamond-shaped topology, whereas the second col-
umn manifests the side view representing the lamellar thick-
ness. It is seen that growth occurs exclusively in the lateral
direction, and virtually ceases in the thickness direction be-
cause of the high penalty for nucleation to occur on the
folded lamellar surface relative to the sides. Hence the nucle-
ation on the folded surface is highly unfavorable, leading to
growth in the lateral directions; this is exactly what one ob-

FIG. 9. The spatiotemporal growth of the diamond shaped polyserves experimentally. In practice, some crystal defects or
ethylene crystal in the crystal order parameter field calculated admpurities on the folded surface could act like nuclei upon
cording to Eq.(11), with the coefficients listed in Table I. which new single crystal layers can grow successively on the

875
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TABLE II. Model parameters calculated based on E@239— Ry’ =0.1063

(220), using the material parameters listed.
(a) Material parameters (b) Model parameters

AH2 2.8x10P I m 3 r 0.034 st
T 350 K Key 2.149<10 *°m?
Tn? 387 K K2 14.12<10 **m?
v 1x108ms? W 6.878x< 10°
8 1x10 °m g 0.256
gxyyavb 0.0137 Jm?2 (a) ®%, =0 at 10000 time steps (b) &2, =0.0532 at 3500
P 0.09 Jm?

8 or solvated PE crystald].
PThe surface energies are approximatedr@g= oy, 0,=0,, 0
=0.0137J R, ando=0.09 J % [7].

existing single crystal surface. However, the present theoret-
ical model is not designed to account for the multilayer
growth of single crystal mats.

(c) &, =0.1063 at 2000 (d) %2, =0.4254 at 750.

C. Curved single crystal in polyethylene
g y polyethy FIG. 11. The simulated curved crystals in the crystal order pa-

Another interesting feature in polymer crystallization is \ameter field according to E424), with T'=0.1894,W=5.086,¢
the growth of curved single crystals. The curved crystals in- g 256, andi2,,=0.1063, showing various topologies of curved
polyethylene are formed by growth along six growth fronts:single crystals{a) a diamond shaped single crystés) a lozenge
two normal to the (10) and(110 planes, and two normal to shaped curved single cryst#t) a lenticular curved single crystal,

and (d) a slender curved single crystal.

the a axis[along the(100) plang. In this paper, we propose
that the growth along these various crystallographic planes
can be modeled simply by employing different valuesxof
normal to these planes. The interface gradient coefficient ten-
sor in dimensionless unit& can be written as sum of the
corresponding tensors for the two growth fronts, viz.,

k=T110t @' ag " Kidy, (23
~ P 0 ~ P 0y. . -
where&;o={"5° ;m} and&io={"}° o i.j,p.q=1,2.

The second term in Eq(23) is simply the coordinate
transformation from tha-b coordinate to the-y coordinate
with a transformation tensor given as

1 -1
-1 1]
The governing equation in the dimensionless form is thus

J - - -
a_f: “TIWe(p=1D) (= O~V {k (k- V)], (29

a?+p?
Py

where the derivation oV - [&- (k- V)] is the same as that
in real dimensions given by EgA9) in the Appendix.
Equation(24) has been solved to investigate the effect of

FIG. 10. The spatiotemporal growth of a polyethylene crystal inthe relative values d&,qo and,30 0n the shape of the grow-
the crystal order parameter field calculated according to(&n, NG single crystal(Fig. 11 by varying the values ok;qo
with the coefficients listed in Table 1. The simulated patterns in thewhile keeping the value 6k, constant. Wheik,q is zero,
first column represent the diamond shaped single crystal inthe One obtains a diamond-shaped crydtaig. 11@)], as dis-
plane, whereas those in the second column show the lamellar thickeussed in Sec. Il B. WheRo;<110, the shape is that of
ness in thex-z cross section. The simulations were carried out on athe curved crystal with smooth and serrated edges, i.e., the

64X 64X 64 lattice. growth front along the fouf110) planes is smooth and flat,

25
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while that along the tw@100 planes is serrated and hence SF (9fcryst I cryst

curved[Fig. 11(b)]. These features are in good accord with - aw vy (A1)
the observed PE single crystd8] as well as that simulated
by Miller and Hoffman[11,12. The advantage of the present
approach is that it is unnecessary to treat the growth sectors
differently as done by Miller and Hoffmdri 1,12, who con- of of of
sidered the growth of thé110) sector to be governed by the cryst_ 7 local | 77 grad
flat edge mechanism and tfE00) front to be serrated on the P Iy iy’
molecular level. Simple relative values ®foo and’x1g ap-

pear sufficient to generate various topologies encompassir@d, using Eq(4), gives
diamond-shaped to lenticular and curved single crystals with

The first term may be decomposed as

straight and/or serrated edges. Whage= k110, & lenticular I cryst t9f|oca|

crystal emerges$Fig. 11(c)]. Moreover, ifk190>%110, then EY - ,w ¢ (" Vy)?

slender single crystals emerfjéig. 11(d)]; thus it is in good

agreement with the morphology reported by Point and Vil- ~ fiocal v V Ly

lers[15]. It is seen that the number of time steps required to oy (- V)| #e oy grvy (w

reach comparable sizes of the single crystals decreases with

an increasingc;oo value. Assumingx to be independent af, one obtains

D. Conclusions ﬁfCWSt: &f'oca'_ (A2)

Y Y

The spatiotemporal evolution of the nonconserved crystal
order parameter based on the TDGL model A shows facetegn the other hand, the second term of E41) may be
single crystal growth with the features reminiscent of regime deduced further as follows:

l, i.e., the spreading of the stems on the lamellar strip. How-
ever, a new stem could be deposited on the newly formed

strip before all the sites are fully filled, particularly when the Moryst_ ‘?f"’ca' (K Vi) }

size of the single crystal becomes large. That is to say when V¢ Vi (W’/f

the nucleation controlled growth ra® is close to the lateral

growth rateg, there is a crossover in behavior from regime | [ (k- Vi) |- (k- V)

to regime Il. The front edge becomes serrated and eventually Vi

evolves to a curved crystal. The total free energy density Vi I

decays in a rhythmic manner in synchronism with the nucle- =(—K+V¢/ ) (k- V) =K (k- V).
ation event, i.e., the monotonic decay of the free energy dur- IV IV

ing growth is ralsed periodically by the excess free energy
associated with each nucleation event on the newly formeéfténce
lamellar strips. The simulation with the tensor forms of the

interface gradient coefficients based on the TDGL model A 3fcryst

captures the emergence of various topologies encompassing Vv Vi =Vl (e V). (A3)
square, rectangular, diamond-shaped, and curved single crys-

tals. In 3D simulations, the single crystal grows exclusivelyFrom Eq.(3), we have

by spreading in the lateral sides as compared to that in the

thickness direction due to the high penalty for nucleation to f 1ocal

occur on the folded lamellar surface relative to the sides. It P ——— =Wi(y—1)(¢—0). (A4)

should be emphasized that the aforementioned crystal growth
behavior cannot be accounted for by regular front propag

tion models such as the classical Fisher-Kolmogorov equaSUbStItUtIng Eqs(A2), (A3), and(Ad) into Eq. (A1) gives
tion or its modificationg17], as these equations lack meta-

stability for nucleation. oF

5—w=W1//(4,//—1)(1//— =V [k (k-Vip)]. (A5)
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d oF
(;f-—F—f—F{Wz//w—1><w—z>—V~[K~(K~V¢>]},
APPENDIX: DERIVATION OF FUNCTIONAL
DERIVATIVE 6F/ 6y (AG)

The functional derivativeSF/ 5y may be expanded in ac- thereby recovering E(6).
cordance with the well-known identity relation of Lagrang- The termV -[ k- (k- VW)] in Eq. (A6) is further given by
ian mechanic$39]: the expression
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1V
V'[K'(K'V(ﬂ)]ZV'[IO K'(&—f]—“el) ] for j=1,2
s _
=V. K"(KIJ(?—XJ'GI') for i=1,2
Ve 1| =12
=V:| K YniK mei or mn=1,2,
(A7)
Y

V. k(e Vih)]=x "k ijynimv

where&*,&" and & ,&; are covariant and contravariant unit

vectors inx andy directions:
if i=j,

if i#]. (A8)

[%j:l
¥ij=cod @)

Since cosf)=0, the metric tensoy in the rhomboidal lattice

becomes a Kronecke¥in the square lattice. If the tenseris
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taken such thak,;= x4, and k11= k5, then Eq.(A6) can be
expanded as

V[k (k- Vi) [=[ (k1) %+ (k1) %+ 2 cOS @) k11K12]

Py Py
X (E + W) + 2{2K11K12+ COS(a)
02
X[+ (k12?5 :fy. (A9)

In a specific case where,;;= k1,=0 and ;= k= k, EQ.
(A6) leads to Eq(11), i.e.,

2
‘Z_lit —T|Wi(y—1) (=) — k?V2y—2 003“)"2;5; '
(A10)

It should be noted that the present derivation is valid for the
dimensionless case, i.e., the same as the renormalized coef-
ficient of interface gradient term in E¢R4).
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